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LETTER TO THE EDITOR 

A method of calculating k-dependent positron states based 
on the finite-difference approximation 

Shoji Ishibashi 
Electrotechnical Laboratory, 1-14 Umezono, Tsukuba. lbanki 305, Japan 

Received 12 November 1993. in final form 20 December 1993 

Abstract. A method for solving the h-dependent positron Schr6dinger equation has been 
developed, extending the numerical technique developed by Push and Nieminen. It is possible 
to apply the present method to calculations of the positron band mass m'. Results for alkali 
metals and YBazCusO, are presented as examples. 

The numerical solution of the Schrodinger equation was originally developed by Kimball and 
Shortley [I] and applied to positron problems by Puska and Nieminen 121. The differential 
equation 

1 
2 --V*@(T) + V ( T ) @ ( T )  = E @ ( T )  (1) 

. ' is replaced by a set .of linear algebraic equations on three-dimensional mesh points: 

1 @i+l , j ,k  - 2 e i . j . k  + $i-1.j.k @i , j+ l ,k  - 2@i , j ,k  + @i,j-l ,k + 
h: 

-- ( 
2 h: 

The atomic unit is used throughout. Each mesh point is represented by three integers. ?hj,j,k 

and Vi.j .k are values of the positron wavefunction and potential at the point (i, j ,  k ) .  h,, h, 
and h, are mesh spacings for the x ,  y and z directions, respectively. In this case, the energy 
eigenvalue E = ( @ l H l @ ) / ( @ l @ )  ( H :  Hamiltonian) can be obtained from the following 
equation: 

where fi.1.k is a weight factor. For an orthorhombic system, 5 , j . k  = 1, inside the unit cell, 
10 on the boundary planes, 114 on the edges and 1/8 at the corners. Setting a E / a $ i , j . k  = 0, 
a set of equations 

(4) 
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are obtained. The wavefunction is optimized by iterations of calculations of new values of 

The above technique can be applied to both bulk and trapped states of positrons with 
appropriate boundary conditions. For the bulk state with k = 0, the condition is that the 
first normal derivative of the wavefunction on the surface of the WignerSeitz polyhedron 
(or the unit cell) vanishes. For the trapped state, the wavefunction itself is required to 
vanish on the boundary surface far enough from the trap site. It is possible to calculate 
other IC states by using proper boundary conditions which depend on the wave vector k and 
the symmetry, as Puska er al did for hydrogen and helium atoms in metals and on surfaces 
[3-51. 

In the present work, a new technique for calculating k-dependent positron states is 
demonstrated. Instead of dealing with rather complicated boundary conditions, the wave 
vector k is incorporated explicitly in the Schrodinger equation and the expressions for energy 
and wavefunction values in the finite-difference approximation. The periodic boundary 
condition is applied in this case. As an application, positron effective masses m* are 
calculated for a few materials. 

E and @ i , j , k ,  

To calculate posiwon states for general k, a complex Bloch function 

$7k('r) = (o(r)eik.' 

has to be introduced. The kdependent Schrodinger equation is reduced to 

1 '  --V q(r) - ik  . Vp(r) + 
2 

Applying the finite-difference approximation, E is represented by 

Setting aE/a(oFj, = 0 and aE/ap! , j ,k  = 0, the following two equations are obtained 
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The equations (7) and (10) correspond to the equations (3) and (4). respectively, in the case 
where k = 0 and Vi,j,k is real. 

According to the above formulation, positron energy eigenvalues as functions of k 'are 
calculated for alkali metals and YBazCu307. The positron potential V ( r )  is constructed 
using a method based on the superposed atom model [2] as 

V ( 4  = VCW + KO, (n-(T))  (12) 
where VC is the Coulombic part from nuclei and electrons while V,, is the correlation 
potential.due to positron-electron (e+-e-) correlation effects. The practical form of V,,, 
as a function of n-(r )  was given by Borofiski and'Nieminen [6]. L(T) and Vc(r) were 
obtained by the superposition of neutral-atom electron densities and potentials [7]. The 
values E ( k )  have been calculated in the vicinity of the r point along the [boll axis for 
alkali metals (0 < k, < 0.005 x 27r/u) and along the ,[loo], [OlO] and [boll axes for 
YBazCu& (0 Q kx < 0.005 x 2rc/a, 0 Q k, Q 0.005 x b / b ,  0 Q k, < 0.005 x 2n/c). 
The mesh spacings are u/20 for alkali metals and a/20, b/20 and c/60 for YBa2Cu307. 
As for K, additional calculations have been done with mesh spacings of a/10 and a/40 to 
check the convergence, and along the [Oll] and [111] axes to confirm the symmetry. The 
positron band mass m* is obtained by fitting the resultant E ( k )  curve to a parabola. The 
values obtained are listed in table 1 together with the calculation conditions. 

Table 1. Posifron band masses calculated on the basis of the finitedifference approximation 

Material Band mass m' Axis II k Mesh suacinz . -  
L, 1.0210 [OOIl a120 
Na 
K 

Rb 

1.0288 [OOII n/20 
1.0419 [OOII a120 
1.0389 [OOll all0 
1.0427 [OOll a140 
I0419 10111 a120 
1.0419 iiiij n/20 
1.0477 [OOlI a120 

cs 1.0565 [Qoll a120 
YBazCusDi 1.1631 VOOI nl20, bI20, cl60 

1.0658 [OlOI 
22441 [OOIl 

YBa2Cu30, 1.3135 [loo1 al20, b/20, cl60 
NQ e+-e- correlalion 1.0716 [OlOI 

59151 10011 

Comparing m* values for K along the [OOl] axis calculated for various mesh spacings, 
it can be concluded that the mesh spacing a/ZO is fine enough because the difference from 
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the value for n/40 is at most 0.1%. The masses along [OOI], [Oll] and [ill] are the same. 
This does not conflict with the expected s-like character of the cubic symmetry. 

The values obtained for the positron band mass m' in various alkali metals are almost 
unity, although they increase slightly with the lattice constant increasing in going from 
Li to Cs. This is in good agreement with previous reports [8-101. These band masses 
are significantly smaller than the effective masses obtained experimentally in which other 
contributions such as phonon effects are included [8, 11-14]. 

YBazCu307 is a typical anisotropic compound and thought to be a good example for 
showing an anisotropic band mass. Von Stetten et a1 calculated the positron band mass on 
YBa2Cu307 by the self-consistent LAPW method and obtained the values of 1.17 along [lOO], 
1.05 along [OlO] and 6.6 along [OOl] [15]. Their value along the [OOl] axis is much larger 
than that of the present work. In their calculation, the e+-e- correlation was not included. 
In order to compare with their result more appropriately, the band mass is calculated with 
no e+-e- correlation term included in the potential. The resultant values are also listed 
in table 1. The agreement with the results of von Stetten et ol [E] is rather good in this 
case. Whether or not the correlation is included, the calculated positron distribution shows 
its density maximum between one-dimensional Cu-0 chains. The amplitude of the positron 
density decreases along the [OOl] axis more rapidly in the case where the correlation is not 
included, however. The present results are consistent with the previous calculations made 
by von Stetten et nl and Singh et a1 [16]. The remarkable change of the band mass along 
the [OOl] axis reflects the above-mentioned difference in the positron density. 

In summary, a method for obtaining k-dependent positron states is presented. As an 
application, positron band masses m' have been calculated for alkali metals and YBazCusO7. 

The author is grateful to Dr Takehide Miyazaki for many helpful discussions. 
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